Monday, June 3, 2019

Design Of Calipers For Post Polio Paralytic Patients Engineering Essay

Design Of Calipers For Post infantile paralysis Paralytic Patients technology moveABSTRACTOver 13 million in India people suffer from various locomotor disabilities, of which 4 million have been afflicted by polio. Polio destroys the nervous system and causes paralysis of the limbs. An orthosis or brace is required to put forward support to compensate for the purpose littleened muscles, of importtain proper positioning and stability of the alter joints, restore weight-bearing capabilities to the affected legs and allow the patient role to walk without the risk of falls and further fractures.The objective of this project is to develop a human ashes for adjustable polio braces, taking into consideration hinge motility at the human knee. The current originations of KAFO be do of Stainless Steel, Aluminium, Thermoplastics, Reinforced Carbon fibers etc. While Aluminium is light-weight, it does not provide the required stiffness for the caliper determination Stainless Ste el is corrosion resistant and has great yield strength but is heavy. Hence hooey analysis is done to chose a solid with density between that of Aluminium and Stainless Steel, but with high ultimate strength and high fatigue heroism choke. Also the currently available jut outs do not incorporate pliable stool at the knee thus discomforting the patient during travel etc. The proposed design is done using CAD tools. A pilot prototype is make in PVC and field-tested to determine if adjustments good deal be easily performed by the patient. establish on feedback from the field-testing, the final model was designed using si scraps.ABOUT THE COMPANYM/s. AAROPNA PROTESI PRIVATE LTD. is a medical implants surgical instruments manufacturing and trading company. Our woof of this company was based on its expertise in developing biomedical instruments and implants and its association as a subsidiary of its parent company parent M/s. atomic number 22 TANTALUM PRODUCTS LTD, which is an I SO 90012008 certified company dealing in various te Products for the past 29 years.The objective of the company is to establish the necessary beginning(a) infrastructure for design, develop, manufacture, package, trade market the Orthopaedic, Neurosurgical, Orthodontic, Dental and other similar reconstructive / replacement implants and its surgical instruments in Titanium loads and other advanced Bio poppycock.Aaropna Protesi Private Ltd. deals with purpose of medical implants through bio automatic laws and the development, customization and optimization of medical implants and instruments using technology of CAD-CAM Solutions. It trades in world-class imported medical implants, surgical instruments, tools other surgical accessories in India. It has to a greater extent than two decades of experience in handling Titanium, Tantalum, Zirconium and Niobium through its parent company.INTRODUCTION1.1 WHAT IS POLIOMYELITIS?Poliomyelitis, often known as polio or infantile paralysis, is an acute viral infectious dis relievo spread from person to person, primarily via the fecal-oral route. 1In about 1% of cases the virus enters the central nervous system, preferentially infecting and destroying motor neurons, leading to muscle impuissance and acute flaccid paralysis. Different types of paralysis may occur, depending on the nerves involved spinal polio is the about green form, characterized by asymmetric paralysis that to a greater extent or less often involves the legs. 2The term poliomyelitis is employ to identify the disease caused by any of the three unadorned variations of poliovirus. Two introductory patterns of polio infection are described a minor illness which does not involve the central nervous system (CNS), sometimes called abortive poliomyelitis, and a major illness involving the CNS, which may be paralytic or non-paralytic. 1 In most people with a normal immune system, a poliovirus infection is asymptomatic.The virus enters the central nervous sys tem in about 3% of infections. Most patients with CNS involvement develop non-paralytic aseptic meningitis, with symptoms of headache, neck, back, abdominal and finish pain, fever, vomiting, lethargy and irritability. 23 Approximately 1 in 1000 to 1 in 200 cases progress to paralytic disease, in which the muscles become weak, floppy and poorly controlled, and finally all told paralyzed this condition is known as acute flaccid paralysis. 4In many countries, polio or poliomyelitis was for many years the most common cause of physical disability in children.1 Currently through vaccination programs, Polio has been eliminated in most countries, a size-able percentage of people are until now affected by the crippling disease in India, Nepal, Nigeria and Afghanistan.Often the paralysis will gradually disappear, business officely or completely. Any paralysis left later 7 months, however is usually permanent and definite secondary problems may develop, curiously if precautions are not taken to prevent them. These problems are further disabilities or complications that can appear after, and because of, the original disability.Contracture of joints is one commonly encountered secondary problem. In this there is a shortening of muscles and tendons so that the full range of limb movement is prevented. 5 shape. 1.1 Typical contractures in polioOther common deformities can cause deformities including anywhere stretched joints and dislocations.Fig. 1.2 Deformities caused by polio1.2 EVALUATING A PATIENTS NEED FOR AIDS AND PROCEDURESStep1 Observe the patient carefully and notice which move of the body seem strong, and which seem weak. Differences between one side of the body and the other are identified much(prenominal) as differences in the length or thickness of the legs. Other deformities, unusual gait, tilt to one side, backing limbs, position of hips, shoulder and geld of back are as well observed. These early observations will help you know what parts of the body you most need to check for strength and range of motion. 5Step2 This is the physical examination. It should usually includeRange-of-motion testing, especially where there might be contractures.Muscle testing, especially of muscles that may be weak. Also test muscles that need to be strong to make up for weak ones ( much(prenominal) as arm and shoulder strength for crutch use).Check for deformities contractures dislocations (hip, knee, rear end, shoulder and elbow) difference in leg length tilt of hips and curve or abnormal modulate of the back.Step3 After the physical exam, over a march on observe how the patient moves or walks. The particular way of miserable and walking is related with the physical findings (such as weakness of certain muscles, contractures, and leg length).Step4 Based on observations and tests, a study is done to understand what encourageance might help the patient. Different aspects of the aid must be considered such as benefit, cost, comfort, appear ance, availability of materials, and whether the patient is comfortable.Step5 Once the assist device has been decided, the necessary measurements are taken to make the brace or aid. When making it, once again it is wise to put it together temporarily so that adjustments can be made before it is rivet, glue, or nail it into its final form.Step6 Have the patient demonstrate the brace or aid for a few days to get used to it and to see how well it works. If there is discomfort or any problems, swop improvements or necessary adjustments should be made.1.3 DESCRIPTION OF A CALIPERBraces or calipers are aids that help hold legs or other parts of the body in useful positions. They usually serve either one or both of the purposes given belowTo provide support, strength/firmness to a weak joint (or joints).To help prevent or correct the deformity.ORTHOTIC DEVICEAn orthosis or orthotic is an orthopedic device that supports or corrects the function of a limb or the torso 6. An orthopaedic bra ce or orthotic is an orthopaedic device used toControl, guide, limit and/or immobilize an extremity, joint or body segment for a particular reasonTo restrict movement in a given directionTo assist movement generallyTo reduce weight bearing forces for a particular purposeTo aid rehabilitation from fractures after the removal of a castTo otherwise correct the shape and/or function of the body, to provide easier movement capability or reduce pain. 6LOWER LIMB ORTHOSISA inflict-limb orthotic is an external device that is attached to the lower limb as a whole or limb segment in order to improve its function by providing support, trim down pain through transferring load to another area or correcting flexible deformities.NOMENCLATURE FOR CALIPERSCalipers are named after the joints that they replace the function of. The following are the acronyms usedAnkle Foot Orthosis (A.F.O.) human knee Ankle Foot Orthosis (K.A.F.O.)articulatio coxae Knee Ankle Foot Orthosis (H.K.A.F.O.)ANKLE FOOT ORTH OSIS (A.F.O.s)Ankle foot orthoses are orthotic devices encompassing theanklejoint and all (or part) of thefoot. AFOs are externally utilise and think to control position and motion of the ankle, compensate for weakness, or correct deformities. 6Fig. 1.3 Ankle Foot OrthosisKNEE ANKLE FOOT ORTHOSIS (K.A.F.O.)A knee-ankle-foot orthosis provides flexion, extension and mediolateral stabilization of the knee may provide free or locked knee motion, or adjustable range of motion 7.A knee-ankle-foot orthotic is typically designed to enable patients suffering from weakness or lack of control of the knee joint to walk safely. It is in like manner used as an independent walking device for a walking-impaired person whose lower limb is paralyzed or whose muscle function is lost imputable to his spinal cord injury, diseases (such as polio), cerebrovascular disorder, external wounds and so forth.It is comprised of a main hinge assembly, an ankle assembly, a foot plate a lower leg housing member an upper leg housing member and supporting structure.Fig. 1.4 Knee Ankle Foot Orthosis HIP KNEE ANKLE FOOT ORTHOSIS (H.K.A.F.O)HKAFO is basically a KAFO with addition of hip joint and pelvic section whichprovide control to selected hip motions. The motions included at the hip are front to back, side to side, and rotation. In the HKAFO there is a minimized risk of the hipmoving out of proper position or dislocating. In this type of caliper, thehip and lower spine is stabilized in cases where the patient is weak or paralyzed.Fig. 1.5 Hip Knee Ankle Foot OrthosisThe average weight of guileless steel calipers are given below.Table 1.1 Weight of conventional stainless steel calipers instance OF CALIPERWEIGHT (kg)A.F.O.1.100K.A.F.O.1.600H.K.A.F.O.2.2502. LITREATURE SURVEYLiteratures on existing Calipers and designIn the literature survey, various designs of existing calipers have been proposed. The patients comfort level, flexibility, cost-effectiveness and weight form the most important basis for the design of the caliper. Some of the recently published works are as followsTable 2.1 Literature SurveySL.NOTITLEAUTHOR adept DETAILSCONCLUSIONS/LIMITATIONS1.Anatomical Models of Diarthroidal Joints Rigid Multibody Systems and Deformable StructuresJH HeggardComputer Methods in Biomechanics and biomedical Engineering- Volume 2, 2003Mathematical methods to model diarthroidal joints. Modelling of the joints is necessary to be able to understand the barrier faced in movement by a post-polio paralytic patient.The various forces and tensiones acting on the joints were studied in order to understand various basic movements and to help in the design of calipers.2.Bioengineering Analysis of Force Actions Transmitted by the Knee JointJK MarrissonBiomedical Engineering, 5 164-178, 1988Determining forces acting on the knee joint as the caliper to be designed is a K.A.F.O(Knee-Ankle-Foot-Orthosis) caliper.Forces on knee joint during locomotion3.Orthopaedic Prosthesis and Joint Imp lantsShan Fengwang, Lichun L, Michael J. YaszemskiBiomedical Engineering, 2 1984Study of Titanium and its properties such as biocompatibility, light weightedness, density, youngs modulus to check for its use in the manufacture of calipersUse of si in biomedical applications and how this could be extended to the manufacture of calipers and reduce the discomfort and weight of the same.2.1 WORKFLOWStartCaliper ClassificationSimilar Products AnalysisCommercial IntelligenceMaterial weftManufacturing ProcessRecognition of Tools and Machineries phylogenyDesign of ProductModellingAnalysisFabrication of Prototype ModelFabrication of Prototype ModelTesting verification I/P=O/PStopRoot cause analysis for failureRecognition of Caliper and its ApplicationFig. 2.1 Workflow3. SELECTON OF MATERIALFor the design of a caliper, a material is chosen based on its physical properties such as tractile strength, elastic modulus, yield focus, etc. The choice of material is based on a comparative analysis of these factors. Ideally, a material should be chosen such that the caliper isComfortableLightweight, yet strong painless to handleCost-effectiveDurableAs attractive as possibleEasy to manufacture 83.1 MATERIALS CURRENTLY USED FOR PRODUCTION OF CALIPERSBraces are made from various types of materials-plastic, elastic, admixture, or a combination of similar materials.At present calipers are of two typesMetallic made from Aluminum, Stainless steelNon-metallic- made from polypropylene, reenforce carbonAdvantages of metallic calipers over non-metallic calipersLess expensive to manufacture Metallic calipers are cheaper to produce because those manufactured using poly-propylene require specialized moulds to shape the polymer. The biggest expenditure in making plastic braces is the plaster bandage used for casting a mold of the leg.Easier to customize for each patient As the eyeshade and contours of each patient differs, the metal rods are easier to customize than plastic calipers.Th ey are quick and easy to makeThey are more durable than plastic calipers.If used with sandals or clogs, in hot weather they are cooler than plastic.3.2 TITANIUM AS AN ALTERNATIVE MATERIAL3.2.1 GENERAL PROPERTIES OF TITANIUMTitanium is a chemic element, metallic in nature whose chemical symbol is Ti , atomic number 22 and atomic weight 47.90. Ti is a transition metal silver in color It has the following propertieslow densityhigh tensile strengthcorrosion-resistantThere are two allotropic forms and five course occurring isotopes of this element, 46Ti through 50Ti, with 48Ti being the most abundant (73.8%). 8 It is the ninth-most abundant element in the Earths crust (0.63% by mass) and the seventh-most abundant metal. 8Titanium and its alloys possess suitable mechanical properties such as strength, bend strength and fatigue resistance to be used in load-bearing biomedical applications such as orthopaedics and dentistry.Titanium is a reactive metal. In air, water, or arbitrary electrol ytes an oxide work is formed on the surface of the material. This oxide belongs to one of the most resistant compounds in the mineral world. As the oxide layer is a dense film it protects the metal from chemical attack which is of importance in an aggressive biological environment.Within the human body, titanium is inert as the oxide layer which is formed is in contact with the biological tissue, is hardly soluble and in particular no ions are released that could react with other molecules. 9There are 22 grades of commercially available alloyed and unalloyed titanium. Based on the application, a suitable grade is chosen.3.2.2 COMPARATIVE STUDY OF STAINLESS STEEL, ALUMINIUM AND TITANIUMMetals used for the purpose of designing calipers are required to have both high static and cycle-dependent properties. Tensile yield and ultimate strength, modulus of elasticity, and fatigue endurance limit are the principal metallic strength attributes that must be determined. Wear resistance is als o an important criterion for all biomaterials. Excessive wear can lead to premature mechanical failure of the replacement component.Table 3.1. Comparative study of the physical properties of the different materialsPHYSICAL PROPERTIESMATERIALSStainless steelAluminiumTitanium concentration (gcm3)9.02.704.51Ultimate strength (MPa)860455900Yield strength (MPa)520400830Yield mark (MPa)210-35040-50240-370Youngs modulus (GPa)20570110-125Linear coefficient of thermal expansion (F-1)7.810-612.910-6.5.010-6DensityDensity of a material is defined as the concentration of matter as measured by the mass per unit volume. A higher density indicates a higher mass for a particular volume.Titanium has density between stainless steel and aluminium indicating that for the same volume of material, titanium is lighter than stainless steel but heavier than aluminium.Ultimate strengthUltimate strength, also known as tensile strength, is defined as the maximum stress a material can withstand before necking. Ultimate strength should bedesirably, high for a material.Titanium has ultimate strength higher than stainless steel and twice as high as aluminium indicating that it can withstand greater tensile stress i.e. it can withstand more stress before necking.Fig.3.1 Stress-Strain curveYield StrengthYield strength is defined as the property of a material to resist deformation. For a good material, the yield strength should be high.The yield strength for titanium is almost twice as high as stainless steel and aluminium indicating that it can withstand more stress without deforming permanently.Yield StressYield stress is defined as the minimum amount of stress which when applied to the body causes permanent deformation. Even if the applied stress is removed at this point, the object does not return to its original dimensions.The yield stress of titanium is almost equal to stainless steel but more than 6 times than that of aluminium.Youngs ModulusYoungs modulus is the ratio between stress a pplied and resulting strain. It is used as a measure of change in linear dimensions upon application of tensile stress. If this ratio is large, it indicates that the material can withstand stress better with less deformation.The Youngs Modulus of titanium is higher than aluminium but lesser than that of stainless steel.The modulus is an important foreboding in the orthopedic application of biomaterials becauseBone has a modulus on the order of 17 GPa. The discrepancy between the modulus of bone and that of the alloys used to support structural slews means that the metallic devices implanted in the body take a disproportionate share of the load applied as stress.According to Wolffs Law, bone adapts to applied stress. Because alloys cause stress shielding one result of the adaptation is that the bone associated with the implant does not become or remain as strong as it would in the absence of an implant. 12Linear Coefficient of ExpansionLinear coefficient of expansion is defined as the increase in length per degree rise in temperature. If a metal is alternately subjected to heating and cooling cycles, it should maintain a certain tolerance of dimensions i.e. a low coefficient of thermal expansion is desirable.The linear coefficient of expansion of titanium is much lesser than both stainless steel and aluminium indicating that the change in the dimensions of the object with change in temperature is less, which is desirable.3.2.3 GRADES OF TITANIUMThere are 22 grades of commercially available alloyed and unalloyed titanium. 10Referenced standards ASTM- American Standards for Testing MaterialsThis standard is issued under the fixed designation B 338 as revised on November2003. 15ASTM Specification for commercially pure titanium F-67Table 3.2 places of titaniumGRADECOMPOSITION hit 1 pure titaniumGrade 2Unalloyed titaniumGrade 3Unalloyed titaniumGrade 7Unalloyed titanium positivistic 0.12 to 0.25 % palladiumGrade 9Titanium alloy (3 % aluminum, 2.5 % vanadium)Grad e 11Unalloyed titanium plus 0.12 to 0.25 % palladiumGrade 12Titanium alloy (0.3 % molybdenum, 0.8 % nickel)Grade 13Titanium alloy (0.5 % nickel, 0.05 % ruthenium)Grade 14Titanium alloy (0.5 % nickel, 0.05 % ruthenium)Grade 15Titanium alloy (0.5 % nickel, 0.05 % ruthenium)Grade 16Unalloyed titanium plus 0.04 to 0.08 % palladiumGrade 17Unalloyed titanium plus 0.04 to 0.08 % palladiumGrade 18Titanium alloy (3 % aluminum, 2.5 % vanadium) plus 0.04 to 0.08 % palladiumGrade 26Unalloyed titanium plus 0.08 to 0.14 % rutheniumGrade 27Unalloyed titanium plus 0.08 to 0.14 % rutheniumGrade 28Titanium alloy (3 % aluminum, 2.5 % vanadium) plus 0.08 to 0.14 % rutheniumGrade 30Titanium alloy (0.3 % cobalt, 0.05 % palladium)Grade 31Titanium alloy (0.3 % cobalt, 0.05 % palladium)Grade 33Titanium alloy (0.4 % nickel, 0.015 % palladium, 0.025 % ruthenium, 0.15 % chromium)Grade 34Titanium alloy (0.4 % nickel, 0.015 % palladium, 0.025 % ruthenium, 0.15 % chromium)Grade 35Titanium alloy (4.5 % aluminum, 2 % molybdenum, 1.6 % vanadium, 0.5 % iron, 0.3 % silicon)Grade 36Titanium alloy (45 % niobium)From the comparative study, the following conclusions were drawnThe yield stress, yield strength and ultimate strength are much higher for titanium. Hence it serves as a suitable material for calipers as it has to withstand the stress applied by the body weight and external forces.Lower stiffness of titanium with respect to stainless steel reduces the severity of stress-shielding.The density of titanium is lesser than stainless steel hence the calipers would be much lighter than those made of stainless steel, almost by half.As linear coefficient of thermal expansion is lesser for titanium, the caliper dimensions would not change much with change in temperature.Titanium is more corrosion resistant than stainless steel. Stainless steel relies on chromium to render it passive to corrosion. Titanium however develops passivity on its own from the stable oxide film that forms on its surface.Unal loyed titanium grade 2 has higher ductility and is hence, cast, formed, joined, and machined with relative ease as compared to the alloyed grades.4. DESIGN OF CALIPER4.1 DESIGN OF EXISTING CALIPERS4.2 DEVELOPMENT OF IMPROVED DESIGNSoftware that was used for the development of caliper design Autodesk inventor overlord 2009.4.2.1 ABOUT AUTODESK INVENTOR PROFESSIONAL 2009Autodesk Inventor Professional 2009 helps you design, visualize and stimulate the end product desired digitally. It not only includes the 3D mechanical design and CAD productivity, but also the essential tooling of various parts of the end product required such as plastic, that lends itself to manufacturing, and also facilitating in constitution of the product digitally, sparing the need to test with physical prototypes. With the integration of motion simulation and stress analysis tools in Autodesk Inventor Professional 2009, marketing a product becomes a much easier. Effective prediction on how the product will wo rk in real-time conditions can be done and also automation of important aspects of the design such as the injection molds for plastic parts help greatly in minimizing errors to a good extent.An intuitive design environment of Autodesk Inventor Professional 2009 helps in the development of initial sketches and models of different parts. Also, this software helps by automating the basic geometrical sketches to actual prototypes making using of materials such as plastic, steel frames, tubes etc. This therefore reduces the geometry burden and the time required to make necessary changes and bring about innovation in the product, thereby reducing the time it takes to reach the market.Validation, in earlier times, was a very time consuming and expensive process involving skilled specialists but Autodesk Inventor Professional 2009 has made the entire process very simple and simulation expertise is not required now. Simulation and optimization of designs digitally has become very easy due to this software. candid user interface helps in part by part design and integration. Stress analysis can also be performed to evaluate areas of stress concentration and hence helps in distribution of the same by slight design modifications.Improved DesignAuto Desk Inventor 2009 supports all major lottery formats like DWG and some of the improved features compared to its previous versions includeDesign views in high speed Saves a lot of time. Viewing of drawings and annotation takes very less time when compared to the previous versions.Betterment in error handling High level of intelligence to give suggestions regarding geometrical issues.Faster startup time rear time is much faster when compared to previous versions.Part by part design view Immediate definition and change in any part including dimensions and coloring and suitable assembly instantly.New Standards for 3D Modeling Ease of UseAutodesk Inventor 2009 helps focusing on the problem rather than trying to gain expertise over using the software as such, owing to its advanced user interface and features, making complex dialog boxes redundant.Inventor Fusion Simple tools to explore new shapes and easy on the spot modification of model from any source.Improved design feature creation Better control over the geometry of the design with productivity uncompromised.Assembly design features 20Assembly Snap toolInterference analysis and contact detectionAssembly configurationsLarge assembly execution of instrumentFrame GeneratorWeldmentsContent CenterDesign DoctorDirect manipulationIt is an important feature of Autodesk Inventor Professional 2009 which helps in uninterrupted design workflow. Being able to control all the commands exactly at the point needed gives more room for free sketching, quicker assembly and better accuracy.sustainable DesignMaterial selection can now be done considering environmental effects and cost effectiveness. Using Autodesk, it is now possible to access environmental informat ion on materials required for fabrication and make prudent decisions based on careful analysis.4.2.2 ENGINEERING DRAWINGS OF THE CALIPERDuring the modeling, different parameters were measured which includeddiameter of the mid- thighDiameter of distal end of the thighDistance between mid- thigh and distal end of the thighDiameter of proximal end of the calfDistance between distal end of the thigh and proximal end of the calfDiameter of the distal end of the calfDistance between proximal and distal end of the calfDiameter of ankleLength of the footBreadth of the toesBreadth of mid-footBased on these parameters, the design of the calipers was developed using Autodesk Professional Inventor 2009The drawing was modeled in parts and later assembled into the complete caliper as shown in the drawings.All dimensions are in mmFig 4.1 Engineering drawing of KAFOAll dimensions are in mmFig 4.2 Engineering drawing of upper leg supporting structure (thigh)All dimensions are in mmFig 4.3 Engineeri ng drawing of lower leg supporting structure (Calf)All dimensions are in mmFig.4.4 Engineering drawing of the ankle and foot supporting structureAll dimensions are in mmFig 4.5 Engineering drawing of Ti-Strip1All dimensions are in mmFig 4.6 Engineering drawing of Ti-Strip 2All dimensions are in mm Fig 4.7 Engineering drawing of Ti-Bend StripFig 4.8 Engineering drawing of the Male clampFig 4.9 Engineering Drawing of Female ClampHence, by using Autodesk Inventor Professional 2009, the design for a caliper was developed.The different parts of the caliper were developed individually and later assembled to form a complete model. These diagrams are used as a basis for the development of the prototype.The major changes that were incorporated in the design were at the knee jointMale and Female Clamp were used to replicate the hinge joint at the knee.In order to assist in easy bending of the caliper while sitting, a rivet was introduced which when unscrewed, will faclitate flexion at the kn ee.This is primarily useful while sitting and change of location as the caliper need not be completely removed.5. DEVELOPMENT OF PROTOTYPEThe development of prototype was conducted in essentially three stepsDevelopment of PVC prototypeIdentification of problems and corresponding corrections madeDevelopment of titanium protoype5.1 MANUFACTURING PROCESSThere are five major steps in manufacturing the Polyvinylchloride prototype. They have been listed and enumerated belowMarkingThis is the foremost step in manufacturing. It is also known as Material Planning. Knowing the required dimensions is a prerequisite. Once the dimensions for every part of

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.